The Crystal Structure of 2-Thiohydantoin, $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{ON}_{2} \mathrm{~S}^{*}$

By Lewis A.Walker, \dagger Kirsten Folting and Lynne L. Merritt, Jr
Department of Chemistry, Indiana University, Bloomington, Indiana, U.S.A.

(Received 27 November 1967)

Abstract

The crystal structure of the monoclinic form of 2-thiohydantoin has been determined from threedimensional photographic X-ray data. The space group is $P 2_{1} / c ; a=5 \cdot 635, b=11 \cdot 503, c=7 \cdot 469 \AA, \beta=$ $99^{\circ} 29^{\prime}$, and there are four molecules in the unit cell. The structure was derived from Patterson and electron density maps and refined by least squares methods. The final residual R for 1037 independent reflections is 0.094 . The planar molecules are bonded together by hydrogen bonds in infinite sheets approximately parallel to the (102) plane.

Introduction

The crystal structure of 2-thiohydantoin

is one of several investigations carried out on this laboratory on chelate compounds and organic compounds forming chelates. 2-Thiohydantoin reacts with silver(I) (Dubský, Šindelář \& Cernák, 1938) in the same manner as rhodanine, whose structure was determined earlier (van der Helm, Lessor \& Merritt, 1962). The aim of this research program is to determine the structure of the silver complex and compare it to that of the precipitating agent, although so far all attempts at crystallizing the precipitates of either silver rhodanide or silver 2 -thiohydantoide have failed. This is possibly due to polymerization as has been proposed by Stephen \& Townshend (1965).

Experimental

First attempts at recrystallization of 2-thiohydantoin were from hot water and yielded a triclinic modification in the form of yellow needles. Most of the crystals however, were twinned. Later, single crystals suitable for X-ray investigation were grown by slow evaporation of a saturated ethanol solution. When grown in this manner the crystals are dark yellow rods with a diamond-shaped cross section. They show a pronounced cleavage plane at about 60° to the rod axis, which is the a axis.

From oscillation and Weissenberg photographs the reciprocal lattice symmetry was found to be $2 / m\left(C_{2} h\right)$. The systematic extinction of $h 0 l$ reflections when l is odd and of $0 k 0$ when k is odd identified the space group as $P 2_{1} / c$ (No. 14). Unit-cell dimensions were found

[^0]from zero-level Weissenberg ($\mathrm{Cu} K \alpha$) and precession photographs (Mo $K \alpha$):
\[

$$
\begin{gathered}
a=6.635 \pm 0.007, b=11 \cdot 503 \pm 0.007, c=7.469 \pm 0.010 \AA \\
\beta=99^{\circ} 29^{\prime} \pm 6^{\prime}
\end{gathered}
$$
\]

The assumption of four molecules of $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{ON}_{2} \mathrm{~S}$ per unit cell leads to a calculated density of $1.615 \mathrm{~g} . \mathrm{cm}^{-3}$, in good agreement with the observed value of 1.595 g. cm^{-3}, measured by flotation.

Multiple film equi-inclination Weissenberg photographs of levels $H k l$ for $1 \leq H \leq 2, h K l$ for $0 \leq K \leq 10$, and $h \mathrm{k} L$ for $0 \leq L \leq 6$ were collected using $\mathrm{Cu} K \alpha$ radiation. The three different crystals used during the data collection were fragment cleaved off the rods. They were selected as equidimensional as possible and were parallelepipeds whose largest dimension was 0.5 mm . The intensities were estimated visually with the use of standard scales prepared from characteristic reflections. A total of 1037 independent diffraction maxima were recorded. Of these, 89 were too weak to be observed and were assigned one-half the minimum observed intensity for the range. The preliminary data processing was carried out with the use of programs written for the IBM 709 and the CDC 3600 computers. An estimate of the standard error of each reflection was made from the original intensity readings; this value was later modified according to the actual agreement obtained in the final merging of the different data sets. In order to avoid accidental agreement which would put undue weight on a few reflections, a minimum standard error of $0.5 \times$ (the average standard error for the set) was imposed. No corrections for absorption or extinction were made, $(\mu \mathrm{Cu} K \alpha=52.5$ cm^{-1}). Preliminary scale and temperature factors were estimated by Wilson's method.

Structure determination and refinement

The structure was solved entirely from the Patterson function. The three-dimensional Patterson function was computed with the use of coefficients sharpened
so that the average $\left|F_{h k l}\right|^{2}$ was independent of $\sin \theta$. The origin was partially removed. The coordinates of the sulfur atom were readily determined from the Harker vectors and it was quite easy to locate the rest of the atoms from a model of the Patterson function. The molecule is planar, except for the methylene hy-

Fig. 1. (a) Composite map on (102) through the centers of the hydrogen atoms in the final difference map. Contours are at intervals of $0.25 \mathrm{e} . \AA^{-3}$, starting at $0.50 \mathrm{e} . \AA^{-3}$. A false maximum indicated by dotted contours lies very close to the (105) plane and should probably be interpreted as a residue from the oxygen atoms. (b) Section (102) of a final electron density map. Contours are at intervals of $2 \mathrm{e} . \AA^{-3}$ starting at $2 \mathrm{e} . \AA^{-3}$, except for the sulfur atom where every other contour is omitted. The numbering system used in this paper is indicated.
drogens, and all of the sulfur to non-hydrogen vectors were located in the ($10 \overline{2}$) plane.

A three-dimensional Fourier synthesis, computed with the signs determined from the model, confirmed the solution of the Patterson function. Four cycles of least-squares refinement using a CDC 3600 version of the Busing, Martin \& Levy (1962) full-matrix program reduced the residual $R_{F_{2}}\left(R_{F_{2}}=\Sigma\left|F_{o}^{2}-F_{c}^{2}\right| / \Sigma F_{o}^{2}\right)$ to $0 \cdot 28$. Individual isotropic temperature factors as well as positional parameters were refined. The function minimized was $\left.\sum w\left(\mid F_{o}\right)^{2}-\left|F_{c}\right|^{2}\right)^{2}$. The weighting scheme used was $w=1 / \sigma^{2}\left(F_{o}\right)^{2}$ for the observed reflections, while zero weights were assigned to the unobserved reflections. A three-dimensional difference Fourier computed after the fourth cycle indicated anisotropic movements of the atoms, and it was not possible to locate the hydrogen atoms with certainty. Anisotropic thermal parameters were introduced and two cycles of least-squares refinement reduced the residual $R\left(R=\Sigma\left|F_{o}-F_{c}\right| \mid\right.$ $\left.\Sigma\left|F_{o}\right|\right)$ to $0 \cdot 102$. At this stage the data were checked, a few misindexings were corrected and zero weights assigned to eight low-order reflections which were unreliable either because of extinction or because of very poor agreement in the original estimates. The four hydrogen atoms were then located in a difference Fourier. The peaks chosen ranged in height from 0.6 to $0.9 \mathrm{e} . \AA^{-3}$ and made chemical sense. The contribution of the hydrogens was included in two cycles of anisotropic refinement. Finally the hydrogen parameters

Fig.2. Intramolecular bonds and angles in 2-thiohydantoin.

Table 1. Atomic coordinates and estimated standard deviations.

	x / a	$\sigma(\mathrm{x})$	y / b	$\sigma_{(y)}$	z / c	$\sigma_{(\mathrm{z})}$
$\mathrm{S}(1)$	0.0802	0.0001	0.1387	0.0001	0.0700	0.0001
$\mathrm{C}(1)$	0.2369	0.0005	0.2568	0.0002	0.1304	0.0004
$\mathrm{C}(2)$	0.3213	0.0004	0.4508	0.0002	0.1483	0.0003
$\mathrm{C}(3)$	0.5258	0.0005	0.3875	0.0002	0.2638	0.0004
$\mathrm{~N}(1)$	0.4507	0.0004	0.2678	0.0002	0.2328	0.0004
$\mathrm{~N}(2)$	0.1625	0.0004	0.3688	0.0002	0.0767	0.0004
$\mathrm{O}(1)$	0.3004	0.0003	0.5558	0.0002	0.1231	0.0003
$\mathrm{H}(1)$	0.538	0.009	0.206	0.004	0.284	0.005
$\mathrm{H}(2)$	0.041	0.008	0.393	0.004	0.009	0.005
$\mathrm{H}(3)$	0.537	0.007	0.414	0.003	0.385	0.005
$\mathrm{H}(4)$	0.679	0.008	0.401	0.004	0.234	0.006

Table 2. Thermal parameters
The anisotropic thermal parameters are converted from $\beta_{i j}$ to the mean-square amplitude tensor $U_{i j}$. The expression for the temperature factor consistent with the $U_{i j}$ values is:

$\exp \left[-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+l^{2} c^{* 2} U_{33}+2 h k a^{*} b^{*} U_{12}+2 h l a^{*} c^{*} U_{13}+2 k l b^{*} c^{*} U_{23}\right)\right]$.						
	$U_{11} \cdot 10^{3}$	$U_{22} \cdot 10^{3}$	$U_{33} \cdot 10^{3}$	$U_{12} \cdot 10^{3}$	$U_{13} \cdot 10^{3}$	$U_{23} \cdot 10^{3}$
$\mathrm{~S}(1)$	38	24	50	-9	-7	-1
$\mathrm{C}(1)$	24	24	35	1	1	2
$\mathrm{C}(2)$	19	23	33	0	-2	4
$\mathrm{C}(3)$	23	27	41	2	-4	1
$\mathrm{~N}(1)$	25	25	46	4	-6	4
$\mathrm{~N}(2)$	20	23	40	1	-4	2
$\mathrm{O}(1)$	27	20	49	-1	-4	1

Standard deviations in U values are $0.001 \AA^{2}$ for all atoms.
The isotropic B 's for the four hydrogens were respectively $2 \cdot 2 \pm 0 \cdot 8,1 \cdot 4 \pm 0 \cdot 6,1 \cdot 5 \pm 0 \cdot 7$, and $3 \cdot 1 \pm 0 \cdot 9$.

Table 3. The observed and calculated structure factors
The three columns contain from left to right the values of $l, 10 F_{n}$ and $10 F_{c} .89$ unobserved and 8 low order reflections, given zero weight in the refinements, are marked with an asterisk.

 д"

were refined isotropically. The final residual was 0.094 . This value includes the contribution from eight loworder reflections and 89 unobserved reflections that were given zero weight in the least-squares refinements. In the final cycle of refinement the average shift of all parameters was 0.12σ and the maximum shift was 0.48σ [for β_{23} of $\left.\mathrm{N}(1)\right]$. The atomic scattering factors used were those given in International Tables for X-ray Crystallography (1962).
A final difference Fourier in which the hydrogens were not included in the structure factor calculation was computed [Fig 1(a)]. The enhancement of the hydrogen peaks in this final map indicated that the interpretation of the previous difference synthesis had been correct. The final Fourier is shown in Fig. 1(b) for comparison.
The final atomic parameters are given in Tables 1 and 2. The observed and calculated structure factors are listed in Table 3. The numbering system used is shown in Figs. $1(a)$ and (b).

Description of the structure

Bond distances and angles with their estimated standard deviations are given in Fig. 2 and Table 4.
The molecule is planar except for the methylene hydrogen atoms. Two least-squares planes were com-

Table 4. Intramolecular bonds and angles

	Distance	Standard Deviation
$\mathrm{S}(1)-\mathrm{C}(1)$	$1 \cdot 642 \AA$	$0 \cdot 003$
$\mathrm{C}(1)-\mathrm{N}(2)$	$1 \cdot 393$	$0 \cdot 003$
$\mathrm{~N}(2)-\mathrm{C}(2)$	$1 \cdot 349$	$0 \cdot 003$
$\mathrm{C}(2)-\mathrm{O}(1)$	$1 \cdot 225$	$0 \cdot 003$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 508$	$0 \cdot 003$
$\mathrm{C}(3)-\mathrm{N}(1)$	$1 \cdot 448$	$0 \cdot 003$
$\mathrm{~N}(1)-\mathrm{C}(1)$	$1 \cdot 322$	$0 \cdot 004$
$\mathrm{C}(3)-\mathrm{H}(3)$	$0 \cdot 95$	$0 \cdot 04$
$\mathrm{C}(3)-\mathrm{H}(4)$	$0 \cdot 94$	$0 \cdot 05$
$\mathrm{~N}(1)-\mathrm{H}(1)$	$0 \cdot 92$	$0 \cdot 05$
$\mathrm{~N}(2)-\mathrm{H}(2)$	$0 \cdot 83$	$0 \cdot 05$
		Standard
	Angle	Deviation
	$124 \cdot 3$	$0 \cdot 2^{\circ}$
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	$112 \cdot 6$	$0 \cdot 2$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(2)$	$106 \cdot 5$	$0 \cdot 2$
$\mathrm{~N}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	$126 \cdot 0$	$0 \cdot 2$
$\mathrm{~N}(2)-\mathrm{C}(2)-\mathrm{O}(1)$	$127 \cdot 5$	$0 \cdot 2$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$101 \cdot 1$	$0 \cdot 2$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(1)$	$113 \cdot 4$	$0 \cdot 2$
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(1)$	$106 \cdot 3$	$0 \cdot 2$
$\mathrm{~N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	$129 \cdot 4$	$0 \cdot 2$
$\mathrm{~N}(1)-\mathrm{C}(1)-\mathrm{S}(1)$	$131 \cdot 4$	$2 \cdot 8^{\circ}$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{H}(2)$	$116 \cdot 0$	$2 \cdot 8$
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{H}(2)$	$123 \cdot 6$	$3 \cdot 0$
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{H}(1)$	$122 \cdot 9$	$3 \cdot 0$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{H}(1)$	$104 \cdot 5$	$3 \cdot 7$
$\mathrm{H}(3)-\mathrm{C}(3)-\mathrm{H}(4)$	$108 \cdot 6$	$2 \cdot 5$
$\mathrm{H}(3)-\mathrm{C}(3)-\mathrm{C}(2)$	$115 \cdot 4$	$2 \cdot 5$
$\mathrm{H}(3)-\mathrm{C}(3)-\mathrm{N}(1)$	$112 \cdot 0$	$3 \cdot 1$
$\mathrm{H}(4)-\mathrm{C}(3)-\mathrm{N}(1)$	$115 \cdot 7$	$2 \cdot 8$
$\mathrm{H}(4)-\mathrm{C}(3)-\mathrm{C}(2)$		

a The standard deviations were estimated using the full variance-covariance matrix from the least-squares refinement.
puted by the method of Schomaker, Waser, Marsh \& Bergman (1959). The data for the planes are given in Table 5. For the plane through the five atoms of the imidazolidine ring the average deviation is $0.01 \AA$, the maximum being $0.02 \AA$ for atom $\mathrm{N}(1)$. The seven heavier atoms of the structure are coplanar within $0.03 \AA$, with an average deviation of $0.01 \AA$.

Table 5. Least-squares planes

The equation for the plane is $m_{1} x+m_{2} y+m_{3} z=d$, where x, y, z are fractional coordinates and d is the origin to plane distance in \AA.

Plane through ring atoms

$m_{1}=-3.384 \quad m_{2}=0.733$	$m_{3}=6.611 \quad d=0.2316$ Neviation $\left(\times 10^{2} \AA\right)$
$\mathrm{N}(1)$	-2.20
$\mathrm{C}(1)$	-0.41
$\mathrm{C}(2)$	1.68
$\mathrm{C}(3)$	-0.80
	1.72

$$
\begin{aligned}
& \text { Plane through the seven heavier atoms } \\
& m_{1}=-3.3491 \quad m_{2}=0.8785 \\
& \\
& \begin{array}{cc}
m_{3}=6.6296 \quad d=0.3002 \\
\text { Deviation } \\
\left(\times 10^{2} \AA\right)
\end{array} \\
& \mathrm{S}(1) \\
& \mathrm{O}(1) \\
& \mathrm{N}(1)
\end{aligned}
$$

There are two main points of interest when discussing the structure of 2-thiohydantoin. The first one is the dimensions of the silver precipitating group

where X is S (Stephen \& Townsend, 1965) The dimensions of this group are very similar to those found in rhodanine (van der Helm, Lessor \& Merritt, 1962) as can be seen from Table 6. The two angles adjacent to the group are significantly different in the two compounds, but this must be attributed to the change in geometry of the ring system caused by the replacement of the ring sulfur-atom in rhodanine with an imino group. The other interesting point is the geometry of the heterocyclic ring itself. Recently the structure of DLallantoin, also a derivative of hydantoin, was determined (Mootz, 1965) and a comparison of the bonds and angles in the two imidazolidine rings is given in Table 7. The shortening of the $\mathrm{N}(1)-\mathrm{C}(1)$ bond, $1 \cdot 322 \AA$ in 2-thiohydantoin as compared to $1.341 \AA$ in allantoin, can be expected from the presence of the thioketo group at $\mathbf{C}(1)$. The only other significant difference is
seen in the $\mathrm{C}-\mathrm{C}$ bond involving the tetrahedral carbon in the ring. We find the value $1.508 \AA$, which is closer to the value of $1-501 \AA$ proposed for a $s p^{2}-s p^{3}$ single carbon-carbon bond (e.g. Lide, 1962).

Table 6. Dimensions of the silver binding group

	$\mathrm{H}-\mathrm{N} \rightarrow$	
	$\mathrm{S}-\mathrm{C} \rightarrow$	
	Rhodanine	2-Thiohydantoin
	$1.64 \AA$	$1.642 \AA$
$\mathrm{~S}-\mathrm{C}$	1.37	1.393
$\mathrm{C}-\mathrm{N}$	124.2°	124.3°
$<\mathrm{NCS}$	116.8	112.6
$<\mathrm{CN} \rightarrow$	111.8	106.3

Table 7. The geometry of the imidazolidine ring

Bond*	Dl-Allantoin	2-Thiohydantoin
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.341 \AA$	$1.322 \AA$
$\mathrm{C}(1)-\mathrm{N}(2)$	1.397	1.393
$\mathrm{~N}(2)-\mathrm{C}(2)$	1.362	1.349
$\mathrm{C}(2)-\mathrm{C}(3)$	1.535	1.508
$\mathrm{C}(3)-\mathrm{N}(1)$	1.461	1.448
Angle		
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	107.7°	106.3°
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	111.6	112.6
$\mathrm{~N}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	106.9	106.5
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(1)$	$100 \cdot 7$	10.1
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(1)$	112.7	113.4

* The labelling of the atoms refers to the diagram above.

The molecular packing in one of the infinite sheets parallel to (10 $\overline{2}$) is shown in Fig. 3. Hydrogen bonds of the type $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ link the molecules together, each oxygen accepting two hydrogen bonds, one from the $N(1)$ of one molecule and the other from the $N(2)$ of another. Details concerning the hydrogen bonds are given in Table 8. Two $\mathrm{N}(2)-\mathrm{H} \cdots \mathrm{O}(1)$ bonds of length $2.916 \AA$ are formed between pairs of molecules related by a center of symmetry, while the $\mathrm{N}(1)-\mathrm{H} \cdots \mathrm{O}(1)$ bonds of length $2.928 \AA$ between molecules related to each other by the two-fold screw axes complete the two-dimensional network of molecules.

Table 8. Geometry of the hydrogen bonds

N in basic molecule	$\mathrm{N}(1) \mathrm{H} \cdots \mathrm{O}(1)$	$\mathrm{N}(2) \mathrm{H} \cdots \mathrm{O}(1)$
O in molecule at	$\left(1-x,-\frac{1}{2}+y, \frac{1}{2}-z\right)$	$(\tilde{x}, 1-y, \bar{z})$
$d(\mathrm{~N}-\mathrm{H})$	$0 \cdot 91 \AA$	$0 \cdot 83 \AA$
$d(\mathrm{H} \cdots \mathrm{O})$	2.02	$2 \cdot 10$
$d(\mathrm{~N} \cdots \mathrm{O})$	2.928	2.916
$<(\mathrm{N}-\mathrm{H} \cdots \mathrm{O})$	173°	170°

The hydrogen bonded sheets are held together by weak van der Waals forces. The interplanar spacing $d_{10 \overline{2}}$ is $3 \cdot 2 \AA$ but no intermolecular distances shorter than $3 \cdot 3 \AA$ were found. The closest intermolecular distance between heavy atoms not in the same plane is $3.396 \AA$, between $\mathrm{N}(1)$ in the basic molecule and $\mathrm{C}(1)$ in the molecule related by $\left(x, \frac{1}{2}-y, \frac{1}{2}+z\right)$.

The sulfur atoms related by the center of symmetry at $(0,0,0)$ are $3 \cdot 432 \AA$ apart. This again verifies earlier findings [e.g. Marsh (1955), Donohue (1950), van der Helm, Lessor \& Merritt (1962)] that the van der Waals radius of sulfur is closer to $1.72-1.73 \AA$ than to the value of $1.85 \AA$ given by Pauling (1960).

The closest intermolecular non-hydrogen bonded contacts in the plane, apart from S-S, are $3 \cdot 65 \AA$ for $C(3)$ in the basic molecule to $S(1)$ of the molecule related by $\left(1+x, \frac{1}{2}-y, \frac{1}{2}+z\right)$, and $3.73 \AA$ for $C(3)$ in the basic molecule to $\mathrm{S}(1)$ of the molecule related by $\left(1-x, \frac{1}{2}+y\right.$, $\frac{1}{2}-z$).

This research was supported by the U.S. Atomic Energy Commision under contract No AT(11-1)-120 whose support is gratefully acknowledged. We also wish to thank J. Gvildys of the Applied Mathematics Division of Argonne National Laboratories for making available to us his CDC 3600 Fourier summation program, as well as a CDC 3600 version of Busing \& Levy's Function and Error Program. We also acknowledge the use of the facilities of the Research Computing Center of Indiana University.

Fig. 3. The molecular packing in one of the infinite sheets parallel to (102). Hydrogen bonds are indicated by. The hydrogen atoms have been omitted.

References

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS-A Fortran Crystallographic Least Squares Program, ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
Donohue, G. (1950). J. Amer. Chem. Soc. 72, 2701.
Dubský, J. V., Šindelák, V. \& Černák, V. (1938). Mikrochem. 25, 124.
International Tables for X-ray Crystallography, (1962). Vol. III, p. 202. Birmingham: Kynoch Press.

Lide, D. R. (1962). Tetrahedron 17, 125.
Marsh, R. E. (1955). Acta Cryst. 8, 91.
Mootz, D. (1965). Acta Cryst. 19, 726.
Pauling, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
Schomaker, V., Waser, J., Marsh, R. E. \& Bergman, G. (1959). Acta Cryst. 12, 600.

Stephen, W. I. \& Townshend, A. (1965). J. Chem. Soc. 3738.

Helm, D. van der, Lessor, A. E. Jr. \& Merritt, L. L. Jr (1962). Acta Cryst. 15, 1227.

Acta Cryst. (1969). B25, 93

The Crystal and Molecular Structure of Hydrazinium Hydrazinedithiocarboxylate

By A. Braibanti, A. M. Manotti Lanfredi, A. Tiripicchio
Istituto di Chimica Generale, Università di Parma, Parma, Italy
and F. Logiudice
Istituto di Chimica Industriale del Politecnico and Centro Nazionale di Chimica delle Macromolecole, Sez. I, Milano, Italy

(Received 2 January 1968)

Abstract

The crystal structure of hydrazinium hydrazinedithiocarboxylate, $\left(\mathrm{N}_{2} \mathrm{H}_{5}\right)\left(\mathrm{H}_{2} \mathrm{~N}^{\prime}-\mathrm{NH}-\mathrm{CSS}\right)$, has been solved by a new method of sign determination and refined three-dimensionally by differential syntheses. The hydrazinedithiocarboxylate anions form layers parallel to (010) and the hydrazinium cations form hydrogen bonds between one another, normal to (010). The $\mathrm{N}^{\prime}-\mathrm{N}-\mathrm{CSS}$ group, which can be considered as a dithiocarbamato anion, is planar; the main interatomic distances in the anion are: C-S 1.723 and $1.695 \AA, \mathrm{C}-\mathrm{N} 1.330 \AA$ and $\mathrm{N}^{\prime}-\mathrm{N} 1.414 \AA$. The distance between nitrogen atoms in the hydrazinium cations is $1.436 \AA$. The whole structure is held together by a network of hydrogen bonds.

Introduction

The study of the crystal structure of hydrazinium hydrazinedithiocarboxylate, $\left(\mathrm{N}_{2} \mathrm{H}_{5}\right)\left(\mathrm{H}_{2} \mathrm{~N}^{\prime}-\mathrm{NH}-\mathrm{CSS}\right)$, has been undertaken as an extension of the studies on crystal and molecular structures of salts of hydrazinecarboxylic acid. Hydrazinedithiocarboxylic acid can be considered also as a derivative of dithiocarbamic acid and interesting comparisons can be made with the structures of dithiocarbamates.

Experimental

The compound was prepared by reaction of hydrazine hydrate and carbon sulphide (Curtius \& Heidenreich, 1894). The material was recrystallized from water. The crystals obtained were colorless, well formed, fairly unstable prisms. Their composition was confirmed by chemical analysis.

Crystal data

Compound: hydrazinium hydrazinedithiocarboxylate $\left(\mathrm{N}_{2} \mathrm{H}_{5}\right)\left(\mathrm{H}_{2} \mathrm{~N}^{\prime}-\mathrm{NH}-\mathrm{CSS}\right)$ F.W. 140-24 .

Crystal habit: prisms, elongated along [010].

Crystal class: monoclinic, prismatic.
Unit cell: from rotation and Weissenberg photographs around $[100]$ and $[010](\mathrm{Cu} K \alpha, \bar{\lambda}=1 \cdot 5418 \AA)$ $a=7 \cdot 108(6), b=6 \cdot 828(3), c=11 \cdot 993(7) \AA$ $\beta=90.65(15)^{\circ}$
$V=582.0 \AA^{3} \quad Z=4$
$D_{m}=1.599$ (by flotation), $D_{x}=1.600 \mathrm{~g} . \mathrm{cm}^{-3}$ $\mu(\mathrm{Cu} K \alpha)=70.67 \mathrm{~cm}^{-1}$.
Space group: $P 2_{1} / c\left(C_{2 h}^{5}\right.$, no. 14), from systematic absences.

Intensity measurements

Integrated reflexions $h 0 l, \ldots h 5 l$ and $0 k l, \ldots 4 k l$, obtained by a Weissenberg camera, were measured by a microdensitometer. Absorption corrections were applied as for cylindrical specimens ($\mu \bar{R}=0.85$).

The structure factor and refinement calculations were performed on the computer Olivetti Elea $6001 / \mathrm{S}$ of the Centro Elettronico of the University of Parma. The calculations related to the application of the direct method for sign determination were carried out at the computing centre of the Polytechnic of Milan, on a IBM-7040 computer.

[^0]: * Contribution No. 1631 from the Department of Chemistry, Indiana University.
 \dagger Present address: Department of Chemistry, Goucher College, Towson, Maryland.

